优秀的编程知识分享平台

网站首页 > 技术文章 正文

深入理解java虚拟机学习02 - OutOfMemoryError异常

nanyue 2024-10-12 05:46:00 技术文章 7 ℃

Java堆溢出

Java堆内存溢出异常测试


/**
 * VM Args:-Xms20m -Xmx20m -XX:+HeapDumpOnOutOfMemoryError
 */
public class HeapOOM {

    static class OOMObject {
    }

    public static void main(String[] args) {
        List<OOMObject> list = new ArrayList<OOMObject>();

        while (true) {
            list.add(new OOMObject());
        }
    }
}

运行结果:
--------------------------------------------------------------------------------
java.lang.OutOfMemoryError: Java heap space
Dumping heap to java_pid14708.hprof ...
Heap dump file created [28226153 bytes in 0.089 secs]

Java堆内存的OutOfMemoryError异常是实际应用中最常见的内存溢出异常情况。出现Java堆内存溢出时,异常堆栈信息“java.lang.OutOfMemoryError”会跟随进一步提示“Java heap space”。

虚拟机栈和本地方法栈溢出

由于HotSpot虚拟机中并不区分虚拟机栈和本地方法栈,因此对于HotSpot来说,-Xoss参数(设置本地方法栈大小)虽然存在,但实际上是没有任何效果的,栈容量只能由-Xss参数来设定。关于虚拟机栈和本地方法栈,在《Java虚拟机规范》中描述了两种异常: 1)如果线程请求的栈深度大于虚拟机所允许的最大深度,将抛出StackOverflowError异常。 2)如果虚拟机的栈内存允许动态扩展,当扩展栈容量无法申请到足够的内存时,将抛出OutOfMemoryError异常。 《Java虚拟机规范》明确允许Java虚拟机实现自行选择是否支持栈的动态扩展,而HotSpot虚拟机的选择是不支持扩展,所以除非在创建线程申请内存时就因无法获得足够内存而出现OutOfMemoryError异常,否则在线程运行时是不会因为扩展而导致内存溢出的,只会因为栈容量无法容纳新的栈帧而导致StackOverflowError异常。 为了验证这点,我们可以做两个实验,先将实验范围限制在单线程中操作,尝试下面两种行为是否能让HotSpot虚拟机产生OutOfMemoryError异常: ·使用-Xss参数减少栈内存容量。 结果:抛出StackOverflowError异常,异常出现时输出的堆栈深度相应缩小。 ·定义了大量的本地变量,增大此方法帧中本地变量表的长度。 结果:抛出StackOverflowError异常,异常出现时输出的堆栈深度相应缩小。 首先,对第一种情况进行测试,具体如代码清单2-4所示。

代码清单2-4?虚拟机栈和本地方法栈测试(作为第1点测试程序)

--------------------------------------------------------------------------------
/**
 * VM Args:-Xss128k
 */
public class JavaVMStackSOF {

    private int stackLength = 1;

    public void stackLeak() {
        stackLength++;
        stackLeak();
    }

    public static void main(String[] args) throws Throwable {
        JavaVMStackSOF oom = new JavaVMStackSOF();
        try {
            oom.stackLeak();
        } catch (Throwable e) {
            System.out.println("stack length:" + oom.stackLength);
            throw e;
        }
    }
}

运行结果:
--------------------------------------------------------------------------------
stack length:1001
Exception in thread "main" java.lang.StackOverflowError
	at com.company.JavaVMStackSOF.stackLeak(JavaVMStackSOF.java:12)
	at com.company.JavaVMStackSOF.stackLeak(JavaVMStackSOF.java:13)
	at com.company.JavaVMStackSOF.stackLeak(JavaVMStackSOF.java:13)
……后续异常堆栈信息省略

对于不同版本的Java虚拟机和不同的操作系统,栈容量最小值可能会有所限制,这主要取决于操作系统内存分页大小。

虚拟机栈和本地方法栈测试(作为第2点测试程序)


public class JavaVMStackSOF {
    private static int stackLength = 0;

    public static void test() {
        long unused1, unused2, unused3, unused4, unused5,
             unused6, unused7, unused8, unused9, unused10,
             unused11, unused12, unused13, unused14, unused15,
             unused16, unused17, unused18, unused19, unused20,
             unused21, unused22, unused23, unused24, unused25,
             unused26, unused27, unused28, unused29, unused30,
             unused31, unused32, unused33, unused34, unused35,
             unused36, unused37, unused38, unused39, unused40,
             unused41, unused42, unused43, unused44, unused45,
             unused46, unused47, unused48, unused49, unused50,
             unused51, unused52, unused53, unused54, unused55,
             unused56, unused57, unused58, unused59, unused60,
             unused61, unused62, unused63, unused64, unused65,
             unused66, unused67, unused68, unused69, unused70,
             unused71, unused72, unused73, unused74, unused75,
             unused76, unused77, unused78, unused79, unused80,
             unused81, unused82, unused83, unused84, unused85,
             unused86, unused87, unused88, unused89, unused90,
             unused91, unused92, unused93, unused94, unused95,
             unused96, unused97, unused98, unused99, unused100;

        stackLength ++;
        test();

        unused1 = unused2 = unused3 = unused4 = unused5 =
        unused6 = unused7 = unused8 = unused9 = unused10 =
        unused11 = unused12 = unused13 = unused14 = unused15 =
        unused16 = unused17 = unused18 = unused19 = unused20 =
        unused21 = unused22 = unused23 = unused24 = unused25 =
        unused26 = unused27 = unused28 = unused29 = unused30 =
        unused31 = unused32 = unused33 = unused34 = unused35 =
        unused36 = unused37 = unused38 = unused39 = unused40 =
        unused41 = unused42 = unused43 = unused44 = unused45 =
        unused46 = unused47 = unused48 = unused49 = unused50 =
        unused51 = unused52 = unused53 = unused54 = unused55 =
        unused56 = unused57 = unused58 = unused59 = unused60 =
        unused61 = unused62 = unused63 = unused64 = unused65 =
        unused66 = unused67 = unused68 = unused69 = unused70 =
        unused71 = unused72 = unused73 = unused74 = unused75 =
        unused76 = unused77 = unused78 = unused79 = unused80 =
        unused81 = unused82 = unused83 = unused84 = unused85 =
        unused86 = unused87 = unused88 = unused89 = unused90 =
        unused91 = unused92 = unused93 = unused94 = unused95 =
        unused96 = unused97 = unused98 = unused99 = unused100 = 0;
    }

    public static void main(String[] args) {
        try {
            test();
        }catch (Error e){
            System.out.println("stack length:" + stackLength);
            throw e;
        }
    }
}

运行结果:
--------------------------------------------------------------------------------
stack length:52
Exception in thread "main" java.lang.StackOverflowError
	at com.company.JavaVMStackSOF.test(JavaVMStackSOF.java:49)
	at com.company.JavaVMStackSOF.test(JavaVMStackSOF.java:50)
	at com.company.JavaVMStackSOF.test(JavaVMStackSOF.java:50)
……后续异常堆栈信息省略

实验结果表明:无论是由于栈帧太大还是虚拟机栈容量太小,当新的栈帧内存无法分配的时候,HotSpot虚拟机抛出的都是StackOverflowError异常。

方法区和运行时常量池溢出 由于运行时常量池是方法区的一部分,所以这两个区域的溢出测试可以放到一起进行。HotSpot从JDK 7开始逐步“去永久代”的计划,并在JDK 8中完全使用元空间来代替永久代,在此我们就以测试代码来观察一下,使用“永久代”还是“元空间”来实现方法区,对程序有什么实际的影响。 String::intern()是一个本地方法,它的作用是如果字符串常量池中已经包含一个等于此String对象的字符串,则返回代表池中这个字符串的String对象的引用;否则,会将此String对象包含的字符串添加到常量池中,并且返回此String对象的引用。在JDK 6或更早之前的HotSpot虚拟机中,常量池都是分配在永久代中,我们可以通过-XX:PermSize和-XX:MaxPermSize限制永久代的大小,即可间接限制其中常量池的容量,具体实现如代码清单2-7所示,请读者测试时首先以JDK 6来运行代码。

代码清单2-7?运行时常量池导致的内存溢出异常


/**
 * VM Args:-XX:PermSize=6M -XX:MaxPermSize=6M
 */
public class RuntimeConstantPoolOOM {

    public static void main(String[] args) {
        // 使用Set保持着常量池引用,避免Full GC回收常量池行为
        Set<String> set = new HashSet<String>();
        // 在short范围内足以让6MB的PermSize产生OOM了
        short i = 0;
        while (true) {
            set.add(String.valueOf(i++).intern());
        }
    }

运行结果:
--------------------------------------------------------------------------------
Exception in thread "main" java.lang.OutOfMemoryError: PermGen space
    at java.lang.String.intern(Native Method)
    at org.fenixsoft.oom.RuntimeConstantPoolOOM.main(RuntimeConstantPoolOOM.java: 18)

从运行结果中可以看到,运行时常量池溢出时,在OutOfMemoryError异常后面跟随的提示信息是“PermGen space”,说明运行时常量池的确是属于方法区(即JDK 6的HotSpot虚拟机中的永久代)的一部分。 而使用JDK 7或更高版本的JDK来运行这段程序并不会得到相同的结果,无论是在JDK 7中继续使用-XX:MaxPermSize参数或者在JDK 8及以上版本使用-XX:MaxMeta-spaceSize参数把方法区容量同样限制在6MB,也都不会重现JDK 6中的溢出异常,循环将一直进行下去,永不停歇 。出现这种变化,是因为自JDK 7起,原本存放在永久代的字符串常量池被移至Java堆之中 (JDK 7及以上版本,限制方法区的容量对该测试用例来说是毫无意义的 )。 这时候使用-Xmx参数限制最大堆到6MB就能够看到以下两种运行结果之一,具体取决于哪里的对象分配时产生了溢出:


// OOM异常一:
Exception in thread "main" java.lang.OutOfMemoryError: Java heap space
    at java.base/java.lang.Integer.toString(Integer.java:440)
    at java.base/java.lang.String.valueOf(String.java:3058)
    at RuntimeConstantPoolOOM.main(RuntimeConstantPoolOOM.java:12)

// OOM异常二:
Exception in thread "main" java.lang.OutOfMemoryError: Java heap space
	at java.util.HashMap.resize(HashMap.java:704)
	at java.util.HashMap.putVal(HashMap.java:663)
	at java.util.HashMap.put(HashMap.java:612)
	at java.util.HashSet.add(HashSet.java:220)
	at com.company.RuntimeConstantPoolOOM.main(RuntimeConstantPoolOOM.java:18)

关于这个字符串常量池的实现在哪里出现问题,还可以引申出一些更有意思的影响,具体见代码清单2-8所示。 代码清单2-8?String.intern()返回引用的测试


public class RuntimeConstantPoolOOM {

    public static void main(String[] args) {
        String str1 = new StringBuilder("计算机").append("软件").toString();
        System.out.println(str1.intern() == str1);

        String str2 = new StringBuilder("ja").append("va").toString();
        System.out.println(str2.intern() == str2);
    }
}

这段代码在JDK 6中运行,会得到两个false,而在JDK 7中运行,会得到一个true和一个false。产生差异的原因是,在JDK 6中,intern()方法会把首次遇到的字符串实例复制到永久代的字符串常量池中存储,返回的也是永久代里面这个字符串实例的引用,而由StringBuilder创建的字符串对象实例在Java堆上,所以必然不可能是同一个引用,结果将返回false。 而JDK 7(以及部分其他虚拟机,例如JRockit)的intern()方法实现就不需要再拷贝字符串的实例到永久代了,既然字符串常量池已经移到Java堆中,那只需要在常量池里记录一下首次出现的实例引用即可,因此intern()返回的引用和由StringBuilder创建的那个字符串实例就是同一个。而对str2比较返回false,这是因为“java” 这个字符串在执行String-Builder.toString()之前就已经出现过了,字符串常量池中已经有它的引用,不符合intern()方法要求“首次遇到”的原则,“计算机软件”这个字符串则是首次出现的,因此结果返回true。 我们再来看看方法区的其他部分的内容,方法区的主要职责是用于存放类型的相关信息,如类名、访问修饰符、常量池、字段描述、方法描述等。对于这部分区域的测试,基本的思路是运行时产生大量的类去填满方法区,直到溢出为止。虽然直接使用Java SE API也可以动态产生类(如反射时的GeneratedConstructorAccessor和动态代理等),但在本次实验中操作起来比较麻烦。在代码清单2-8里笔者借助了CGLib 直接操作字节码运行时生成了大量的动态类。 当增强的类越多,就需要越大的方法区以保证动态生成的新类型可以载入内存。另外,很多运行于Java虚拟机上的动态语言(例如Groovy等)通常都会持续创建新类型来支撑语言的动态性。

代码清单2-9?借助CGLib使得方法区出现内存溢出异常


/**
 * VM Args:-XX:PermSize=10M -XX:MaxPermSize=10M
 */
public class JavaMethodAreaOOM {

    public static void main(String[] args) {
        while (true) {
            Enhancer enhancer = new Enhancer();
            enhancer.setSuperclass(OOMObject.class);
            enhancer.setUseCache(false);
            enhancer.setCallback(new MethodInterceptor() {
                public Object intercept(Object obj, Method method, Object[] args, MethodProxy proxy) throws Throwable {
                    return proxy.invokeSuper(obj, args);
                }
            });
            enhancer.create();
        }
    }

    static class OOMObject {
    }
}

在JDK 7中的运行结果:
--------------------------------------------------------------------------------
Caused by: java.lang.OutOfMemoryError: PermGen space
    at java.lang.ClassLoader.defineClass1(Native Method)
    at java.lang.ClassLoader.defineClassCond(ClassLoader.java:632)
    at java.lang.ClassLoader.defineClass(ClassLoader.java:616)
    ... 8 more

在JDK 8以后,永久代便完全退出了历史舞台,元空间作为其替代者登场。在默认设置下,前面列举的那些正常的动态创建新类型的测试用例已经很难再迫使虚拟机产生方法区的溢出异常了。不过为了让使用者有预防实际应用里出现类似于代码清单2-9那样的破坏性的操作,HotSpot还是提供了一些参数作为元空间的防御措施,主要包括: ·-XX:MaxMetaspaceSize:设置元空间最大值,默认是-1,即不限制,或者说只受限于本地内存大小。 ·-XX:MetaspaceSize:指定元空间的初始空间大小,以字节为单位,达到该值就会触发垃圾收集进行类型卸载,同时收集器会对该值进行调整:如果释放了大量的空间,就适当降低该值;如果释放了很少的空间,那么在不超过-XX:MaxMetaspaceSize(如果设置了的话)的情况下,适当提高该值。 ·-XX:MinMetaspaceFreeRatio:作用是在垃圾收集之后控制最小的元空间剩余容量的百分比,可减少因为元空间不足导致的垃圾收集的频率。类似的还有-XX:Max-MetaspaceFreeRatio,用于控制最大的元空间剩余容量的百分比。

本机直接内存溢出

直接内存(Direct Memory)的容量大小可通过-XX:MaxDirectMemorySize参数来指定,如果不去指定,则默认与Java堆最大值(由-Xmx指定)一致,代码清单2-10越过了DirectByteBuffer类直接通过反射获取Unsafe实例进行内存分配(Unsafe类的getUnsafe()方法指定只有引导类加载器才会返回实例,体现了设计者希望只有虚拟机标准类库里面的类才能使用Unsafe的功能),因为虽然使用DirectByteBuffer分配内存也会抛出内存溢出异常,但它抛出异常时并没有真正向操作系统申请分配内存,而是通过计算得知内存无法分配就会在代码里手动抛出溢出异常,真正申请分配内存的方法是Unsafe::allocateMemory()。

代码清单2-10?使用unsafe分配本机内存


/**
 * VM Args:-Xmx20M -XX:MaxDirectMemorySize=10M
 */
public class DirectMemoryOOM {

    private static final int _1MB = 1024 * 1024;

    public static void main(String[] args) throws Exception {
        Field unsafeField = Unsafe.class.getDeclaredFields()[0];
        unsafeField.setAccessible(true);
        Unsafe unsafe = (Unsafe) unsafeField.get(null);
        while (true) {
            unsafe.allocateMemory(_1MB);
        }
    }
}

运行结果:
--------------------------------------------------------------------------------
Exception in thread "main" java.lang.OutOfMemoryError
    at sun.misc.Unsafe.allocateMemory(Native Method)
    at org.fenixsoft.oom.DMOOM.main(DMOOM.java:20)

由直接内存导致的内存溢出,一个明显的特征是在Heap Dump文件中不会看见有什么明显的异常情况,如果读者发现内存溢出之后产生的Dump文件很小,而程序中又直接或间接使用了DirectMemory(典型的间接使用就是NIO),那就可以考虑重点检查一下直接内存方面的原因了。

最近发表
标签列表