优秀的编程知识分享平台

网站首页 > 技术文章 正文

Cortex-A的通用寄存器和程序状态寄存器

nanyue 2024-11-10 10:18:16 技术文章 3 ℃

本文我们要讲的是Cortex-A 的内核寄存器组,注意不是芯片的外设寄存器,主要参考《ARM Cortex-A(armV7)编程手册 V4.0.pdf》的“第 3 章 ARM Processor Modes And Registers”。

ARM 架构提供了 16 个 32 位的通用寄存器(R0~R15)供软件使用,前 15 个(R0~R14)可以用作通用的数据存储,R15 是程序计数器 PC,用来保存将要执行的指令。ARM 还提供了一个当前程序状态寄存器CPSR 和一个备份程序状态寄存器 SPSR,SPSR 寄存器就是 CPSR 寄存器的备份。这 18 个寄存器如图所示:

前面我们讲了 Cortex-A7 有 9 种运行模式,每一种运行模式都有一组与之对应的寄存器组。每一种模式可见的寄存器包括 15 个通用寄存器(R0~R14)、两个程序状态寄存器和一个程序计数器 PC。在这些寄存器中,有些是所有模式所共用的同一个物理寄存器,有一些是各模式自己所独立拥有的,各个模式所拥有的寄存器如下图所示:

从图中浅色字体的是与 User 模式所共有的寄存器,蓝绿色背景的是各个模式所独有的寄存器。可以看出,在所有的模式中,低寄存器组(R0~R7)是共享同一组物理寄存器的,只是一些高寄存器组在不同的模式有自己独有的寄存器,比如 FIQ 模式下 R8~R14 是独立的物理寄存器。假如某个程序在 FIQ 模式下访问 R13 寄存器,那它实际访问的是寄存器 R13_fiq,如果程序处于 SVC 模式下访问R13 寄存器,那它实际访问的是寄存器 R13_svc。总结一下,Cortex-A 内核寄存器组成如下:

①、34 个通用寄存器,包括 R15 程序计数器(PC),这些寄存器都是 32 位的。

②、8 个状态寄存器,包括 CPSR 和SPSR。

③、Hyp 模式下独有一个ELR_Hyp 寄存器。

(二) 通用寄存器

R0~R15 就是通用寄存器,通用寄存器可以分为一下三类:

①、未备份寄存器,即R0~R7。

②、备份寄存器,即 R8~R14。

③、程序计数器 PC,即 R15。分别来看一下这三类寄存器:

1、未备份寄存器

未备份寄存器指的是 R0~R7 这 8 个寄存器,因为在所有的处理器模式下这 8 个寄存器都是同一个物理寄存器,在不同的模式下,这 8 个寄存器中的数据就会被破坏。所以这 8 个寄存器并没有被用作特殊用途。

2、备份寄存器

备份寄存器中的 R8~R12 这 5 个寄存器有两种物理寄存器,在快速中断模式下(FIQ)它们对应着Rx_irq(x=8~12)物理寄存器,其他模式下对应着 Rx(8~12)物理寄存器。FIQ 是快速中断模式,看名字就是知道这个中断模式要求快速执行! FIQ 模式下中断处理程序可以使用 R8~R12寄存器,因为 FIQ 模式下的 R8~R12 是独立的,因此中断处理程序可以不用执行保存和恢复中断现场的指令,从而加速中断的执行过程。

备份寄存器 R13 一共有 8 个物理寄存器,其中一个是用户模式(User)和系统模式(Sys)共用的,剩下的 7 个分别对应 7 种不同的模式。R13 也叫做 SP,用来做为栈指针。基本上每种模式都有一个自己的R13 物理寄存器,应用程序会初始化 R13,使其指向该模式专用的栈地址,这就是常说的初始化SP 指针。

备份寄存器 R14 一共有 7 个物理寄存器,其中一个是用户模式(User)、系统模式(Sys)和超级监视模式(Hyp)所共有的,剩下的 6 个分别对应 6 种不同的模式。R14 也称为连接寄存器(LR),LR 寄存器在 ARM 中主要用作如下两种用途:

①、每种处理器模式使用 R14(LR)来存放当前子程序的返回地址,如果使用 BL 或者 BLX来调用子函数的话,R14(LR)被设置成该子函数的返回地址,在子函数中,将 R14(LR)中的值赋给 R15(PC)即可完成子函数返回,比如在子程序中可以使用如下代码:

MOV PC, LR @寄存器LR 中的值赋值给PC,实现跳转 或者可以在子函数的入口出将LR 入栈:

PUSH {LR} @将LR 寄存器压栈 在子函数的最后面出栈即可:

POP {PC} @将上面压栈的LR 寄存器数据出栈给 PC 寄存器

②、当异常发生以后,该异常模式对应的R14 寄存器被设置成该异常模式将要返回的地址,R14 也可以当作普通寄存器使用。

3、程序计数器 R15

程序计数器R15 也叫做PC,R15 保存着当前执行的指令地址值加 8 个字节,这是因为 ARM的流水线机制导致的。ARM 处理器 3 级流水线:取指->译码->执行,这三级流水线循环执行,比如当前正在执行第一条指令的同时也对第二条指令进行译码,第三条指令也同时被取出存放在 R15(PC)中。我们喜欢以当前正在执行的指令作为参考点,也就是以第一条指令为参考点,那么 R15(PC)中存放的就是第三条指令,换句话说就是 R15(PC)总是指向当前正在执行的指令地址再加上 2 条指令的地址。对于 32 位的 ARM 处理器,每条指令是 4 个字节,所以: R15 (PC)值 = 当前执行的程序位置 + 8 个字节。

(二) 程序状态寄存器

所有的处理器模式都共用一个 CPSR 物理寄存器,因此 CPSR 可以在任何模式下被访问。

CPSR 是当前程序状态寄存器,该寄存器包含了条件标志位、中断禁止位、当前处理器模式标志等一些状态位以及一些控制位。所有的处理器模式都共用一个 CPSR 必然会导致冲突,为此,除了User 和

Sys 这两个模式以外,其他 7 个模式每个都配备了一个专用的物理状态寄存器,叫做 SPSR(备份程序状态寄存器),当特定的异常中断发生时,SPSR 寄存器用来保存当前程序状态寄存器(CPSR)的值,当异常退出以后可以用 SPSR 中保存的值来恢复CPSR。

因为 User 和 Sys 这两个模式不是异常模式,所以并没有配备 SPSR,因此不能在 User 和Sys 模式下访问 SPSR,会导致不可预知的结果。由于 SPSR 是 CPSR 的备份,因此 SPSR 和CPSR 的寄存器结构相同,如图所示:

N(bit31):当两个补码表示的 有符号整数运算的时候,N=1 表示运算对的结果为负数,N=0表示结果为正数。

Z(bit30):Z=1 表示运算结果为零,Z=0 表示运算结果不为零,对于 CMP 指令,Z=1 表示进行比较的两个数大小相等。

C(bit29):在加法指令中,当结果产生了进位,则 C=1,表示无符号数运算发生上溢,其它情况下 C=0。在减法指令中,当运算中发生借位,则 C=0,表示无符号数运算发生下溢,其它情况下

C=1。对于包含移位操作的非加/减法运算指令,C 中包含最后一次溢出的位的数值,对于其它非加/减运算指令,C 位的值通常不受影响。

V(bit28):对于加/减法运算指令,当操作数和运算结果表示为二进制的补码表示的带符号数时,V=1 表示符号位溢出,通常其他位不影响V 位。

Q(bit27):仅 ARM v5TE_J 架构支持,表示饱和状态,Q=1 表示累积饱和,Q=0 表示累积不饱和。

IT[1:0](bit26:25):和 IT[7:2](bit15:bit10)一起组成 IT[7:0],作为 IF-THEN 指令执行状态。

J(bit24):仅 ARM_v5TE-J 架构支持,J=1 表示处于 Jazelle 状态,此位通常和 T(bit5)位一起表示当前所使用的指令集,如图所示:

GE[3:0](bit19:16):SIMD 指令有效,大于或等于。

IT[7:2](bit15:10):参考 IT[1:0]。

E(bit9):大小端控制位,E=1 表示大端模式,E=0 表示小端模式。

A(bit8):禁止异步中断位,A=1 表示禁止异步中断。

I(bit7):I=1 禁止 IRQ,I=0 使能 IRQ。

F(bit6):F=1 禁止 FIQ,F=0 使能 FIQ。

T(bit5):控制指令执行状态,表明本指令是 ARM 指令还是 Thumb 指令,通常和 J(bit24)一起表明指令类型,参考 J(bit24)位。

M[4:0]:处理器模式控制位,含义如下图所示:

Tags:

最近发表
标签列表